| 1. | Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Adv Mater, 2009, 21(32-33): 3343-3351. | 
				                                                        
				                                                            
				                                                                | 2. | 胡旭棟, 王光林. 靜電紡絲納米纖維支架在神經組織工程中的研究進展. 中國修復重建外科雜志, 2010, 24(9): 1133-1137. | 
				                                                        
				                                                            
				                                                                | 3. | 薛正翔, 李敏. 血管組織工程支架研究進展. 中國修復重建外科雜志, 2009, 23(9): 1134-1137. | 
				                                                        
				                                                            
				                                                                | 4. | Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010, 28(3): 325-347. | 
				                                                        
				                                                            
				                                                                | 5. | Rnjak-Kovacina J, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev, 2011, 17(5): 365-372. | 
				                                                        
				                                                            
				                                                                | 6. | Liao S, Li B, Ma Z, et al. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater, 2006, 1(3): R45-53. | 
				                                                        
				                                                            
				                                                                | 7. | Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26(30): 5999-6008. | 
				                                                        
				                                                            
				                                                                | 8. | Eichhorn SJ, Sampson WW. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface, 2005, 2(4): 300-318. | 
				                                                        
				                                                            
				                                                                | 9. | Pham QP, Sharma U, Mikos AG. Electrospun poly (epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006, 7(10): 2796-2805. | 
				                                                        
				                                                            
				                                                                | 10. | Rnjak-Kovacina J, Wise SG, Li Z, et al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 2011, 32(28): 6729-6736. | 
				                                                        
				                                                            
				                                                                | 11. | Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005, 26(18): 3929-3939. | 
				                                                        
				                                                            
				                                                                | 12. | Thorvaldsson A, Stenhamre HS, Gatenholm P, et al. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules, 2008, 9(3): 1044-1049. | 
				                                                        
				                                                            
				                                                                | 13. | Baker SC, Atkin N, Gunning PA, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 2006, 27(16): 3136-3146. | 
				                                                        
				                                                            
				                                                                | 14. | Matthews JA, Wnek GE, Simpson DG, et al. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2): 232-238. | 
				                                                        
				                                                            
				                                                                | 15. | Zhu X, Cui W, Li X, et al. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 2008, 9(7): 1795-1801. | 
				                                                        
				                                                            
				                                                                | 16. | McClure MJ, Wolfe PS, Simpson DG, et al. The use of air-flow impedance to control fiber deposition patterns during electrospinning. Biomaterials, 2012, 33(3): 771-779. | 
				                                                        
				                                                            
				                                                                | 17. | Blakeney BA, Tambralli A, Anderson JM, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials, 2011, 32(6): 1583-1590. | 
				                                                        
				                                                            
				                                                                | 18. | Yokoyama Y, Hattori S, Yoshikawa C, et al. Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett, 2009, 63(9-10): 754-756. | 
				                                                        
				                                                            
				                                                                | 19. | Ki CS, Park SY, Kim HJ, et al. Development of 3-d nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett, 2008, 30(3): 405-410. | 
				                                                        
				                                                            
				                                                                | 20. | Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Lett, 2008, 8(10): 3283-3287. | 
				                                                        
				                                                            
				                                                                | 21. | Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomaterialia, 2011, 7(6): 2544-2557. | 
				                                                        
				                                                            
				                                                                | 22. | Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (epsilon-caprolactone) fibrous mats. Biomaterials, 2010, 31(3): 491-504. | 
				                                                        
				                                                            
				                                                                | 23. | Baker BM, Gee AO, Metter RB, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 2008, 29(15): 2348-2358. | 
				                                                        
				                                                            
				                                                                | 24. | Phipps MC, Clem WC, Grunda JM, et al. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials, 2012, 33(2): 524-534. | 
				                                                        
				                                                            
				                                                                | 25. | Skotak M, Ragusa J, Gonzalez D, et al. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers. Biomed Mater, 2011, 6(5): 055012. | 
				                                                        
				                                                            
				                                                                | 26. | Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev, 2010, 16(4): 371-383. | 
				                                                        
				                                                            
				                                                                | 27. | Nam J, Huang Y, Agarwal S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng, 2007, 13(9): 2249-2257. | 
				                                                        
				                                                            
				                                                                | 28. | Simonet M, Schneider OD, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci, 2007, 47(12): 2020-2026. | 
				                                                        
				                                                            
				                                                                | 29. | Leong MF, Rasheed MZ, Lim TC, et al. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly (D, L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A, 2009, 91(1): 231-240. | 
				                                                        
				                                                            
				                                                                | 30. | Lee JB, Jeong SI, Bae MS, et al. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng Part A, 2011, 17(21-22): 2695-2702. | 
				                                                        
				                                                            
				                                                                | 31. | Choi HW, Johnson JK, Nam J, et al. Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J Laser Appl, 2007, 19(4): 225-231. | 
				                                                        
				                                                            
				                                                                | 32. | Sundararaghavan HG, Metter RB, Burdick JA. Electrospun fibrous scaffolds with multiscale and photopatterned porosity. Macromol Biosci, 2010, 10(3): 265-270. | 
				                                                        
				                                                            
				                                                                | 33. | 朱雷, 呂丹, 孫明林. 不同環境刺激對骨髓間充質干細胞成軟骨分化作用的研究進展. 中國矯形外科雜志, 2010, 18(19): 1618-1621. | 
				                                                        
				                                                            
				                                                                | 34. | Mahmoudifar N, Doran PM. Chondrogenic differentiation of human adiposederived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials, 2010, 31(14): 3858-3867. | 
				                                                        
				                                                            
				                                                                | 35. | Nerurkar NL, Sen S, Baker BM, et al. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomaterialia, 2011, 7(2): 485-491. | 
				                                                        
				                                                            
				                                                                | 36. | Kenar H, Kose GT, Toner M, et al. A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials, 2011, 32(23): 5320-5329. | 
				                                                        
				                                                            
				                                                                | 37. | Stankus JJ, Guan J, Fujimoto K, et al. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials, 2006, 27(5): 735-744. | 
				                                                        
				                                                            
				                                                                | 38. | Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364-3369. | 
				                                                        
				                                                            
				                                                                | 39. | Yang XC, Shah JD, Wang HJ. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A, 2009, 15(4): 945-956. | 
				                                                        
				                                                            
				                                                                | 40. | Park SH, Kim TG, Kim HC, et al. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater, 2008, 4(5): 1198-1207. |