<samp id="ffp3e"><ins id="ffp3e"><ruby id="ffp3e"></ruby></ins></samp>

<menuitem id="ffp3e"><strong id="ffp3e"></strong></menuitem>

    <tbody id="ffp3e"></tbody>

    <tbody id="ffp3e"><bdo id="ffp3e"></bdo></tbody>
    1. <menuitem id="ffp3e"></menuitem>
    2. <progress id="ffp3e"><bdo id="ffp3e"></bdo></progress>

      <tbody id="ffp3e"></tbody>

    3. <progress id="ffp3e"><bdo id="ffp3e"><dfn id="ffp3e"></dfn></bdo></progress><tbody id="ffp3e"><nobr id="ffp3e"></nobr></tbody>
      華西醫學期刊出版社
      關鍵詞
      • 標題
      • 作者
      • 關鍵詞
      • 摘要
      高級搜索
      高級搜索

      搜索

      找到 關鍵詞 包含"功率特征" 1條結果
      • 基于多通道經驗模式分解的腦機接口特征提取

        針對腦機接口(BCI)系統中的多通道非平穩腦電(EEG)信號和腦磁(MEG)信號, 本文提出一種基于多通道經驗模式分解(MEMD)與功率特征結合的信號特征提取算法。首先將多通道腦信號經MEMD算法分解為一系列多尺度多元固有模態函數(IMF)近似平穩分量, 然后對每個IMF分量提取功率特征, 并利用主成分分析(PCA)降維處理, 最后使用線性判別分析分類器對信號特征分類。實驗采用第三次和第四次國際BCI競賽的數據進行驗證, 對皮層EEG信號和MEG信號運動想象任務的識別正確率分別達到92.0%和46.2%, 均位于競賽第一名水平。實驗結果表明本文所提方法有較好有效性和穩定性, 為腦信號特征提取提供了新思路。

        發表時間: 導出 下載 收藏 掃碼
      共1頁 上一頁 1 下一頁

      Format

      Content

      小泉真希