<samp id="ffp3e"><ins id="ffp3e"><ruby id="ffp3e"></ruby></ins></samp>

<menuitem id="ffp3e"><strong id="ffp3e"></strong></menuitem>

    <tbody id="ffp3e"></tbody>

    <tbody id="ffp3e"><bdo id="ffp3e"></bdo></tbody>
    1. <menuitem id="ffp3e"></menuitem>
    2. <progress id="ffp3e"><bdo id="ffp3e"></bdo></progress>

      <tbody id="ffp3e"></tbody>

    3. <progress id="ffp3e"><bdo id="ffp3e"><dfn id="ffp3e"></dfn></bdo></progress><tbody id="ffp3e"><nobr id="ffp3e"></nobr></tbody>
      華西醫學期刊出版社
      關鍵詞
      • 標題
      • 作者
      • 關鍵詞
      • 摘要
      高級搜索
      高級搜索

      搜索

      找到 關鍵詞 包含"多尺度排列熵" 1條結果
      • 多尺度排列熵及其在癲癇發作識別中的應用

        腦電圖是人腦神經元動態活動的綜合表現形式,可以用來研究癲癇的腦部病理變化。本文引入多尺度排列熵(MPE)的概念,將其應用于癲癇患者和健康人的腦電圖特征提取,并將所有特征參數送入支持向量機(SVM)進行分類。實驗結果表明,在區分癲癇患者和健康人的腦電圖時平均分類精度達100%,癲癇發作間期和發作期的平均分類精度為99.58%。與同時輸入的1~5個單尺度排列熵(PE)對比分析發現,MPE比PE更能反映癲癇腦電圖多尺度上的特征,能更好、更穩定地實現癲癇預測。

        發表時間: 導出 下載 收藏 掃碼
      共1頁 上一頁 1 下一頁

      Format

      Content

      小泉真希