<samp id="ffp3e"><ins id="ffp3e"><ruby id="ffp3e"></ruby></ins></samp>

<menuitem id="ffp3e"><strong id="ffp3e"></strong></menuitem>

    <tbody id="ffp3e"></tbody>

    <tbody id="ffp3e"><bdo id="ffp3e"></bdo></tbody>
    1. <menuitem id="ffp3e"></menuitem>
    2. <progress id="ffp3e"><bdo id="ffp3e"></bdo></progress>

      <tbody id="ffp3e"></tbody>

    3. <progress id="ffp3e"><bdo id="ffp3e"><dfn id="ffp3e"></dfn></bdo></progress><tbody id="ffp3e"><nobr id="ffp3e"></nobr></tbody>
      華西醫學期刊出版社
      作者
      • 標題
      • 作者
      • 關鍵詞
      • 摘要
      高級搜索
      高級搜索

      搜索

      找到 作者 包含"熊小亮" 1條結果
      • 基于自適應分區演化水平集的腎臟腫瘤超聲圖像分割

        腎臟腫瘤已經成為威脅人類健康的重要疾病之一。超聲檢查具有普及率高、價格低廉、無輻射等諸多優點,已廣泛應用于腎臟腫瘤的診斷中。超聲圖像中腎臟腫瘤的準確分割是制定治療方案的基礎。腎臟腫瘤往往生長在腎皮質中間,分割容易受到周圍臟器干擾,而且超聲圖像對比度低、斑點噪聲嚴重,使得腫瘤分割困難。本文根據腎臟超聲圖像的特點,提出基于自適應分區演化水平集(ASLSM)的腫瘤分割算法。首先,將感興趣區域圖像分區;然后,融合內外能量項和梯度設計目標函數,并自適應調整二者比例;最后,根據質心原理和零水平集內外相似度自適應卷積半徑及曲率,進行曲線演化。將本算法用于腎臟超聲圖像,實驗結果中豪斯多夫距離(HD)為(8.75 ± 4.21)mm,平均絕對距離(MAD)為(3.26 ± 1.69)mm,戴斯系數(DICE)為 0.93 ± 0.03。與傳統的方法進行比較,實驗結果證明本算法可以獲得更加準確的腫瘤分割結果,今后本算法或可為輔助醫生定位和診斷腎臟腫瘤提供便利。

        發表時間:2020-02-18 09:21 導出 下載 收藏 掃碼
      共1頁 上一頁 1 下一頁

      Format

      Content

      小泉真希