<samp id="ffp3e"><ins id="ffp3e"><ruby id="ffp3e"></ruby></ins></samp>

<menuitem id="ffp3e"><strong id="ffp3e"></strong></menuitem>

    <tbody id="ffp3e"></tbody>

    <tbody id="ffp3e"><bdo id="ffp3e"></bdo></tbody>
    1. <menuitem id="ffp3e"></menuitem>
    2. <progress id="ffp3e"><bdo id="ffp3e"></bdo></progress>

      <tbody id="ffp3e"></tbody>

    3. <progress id="ffp3e"><bdo id="ffp3e"><dfn id="ffp3e"></dfn></bdo></progress><tbody id="ffp3e"><nobr id="ffp3e"></nobr></tbody>
      華西醫學期刊出版社
      作者
      • 標題
      • 作者
      • 關鍵詞
      • 摘要
      高級搜索
      高級搜索

      搜索

      找到 作者 包含"王仁芳" 1條結果
      • 圖像增強下基于生成對抗網絡和卷積神經網絡的CT與MRI融合方法

        針對多模態醫學圖像融合中的重要特征丟失、細節表現不突出和紋理不清晰等問題,提出一種圖像增強下使用生成對抗網絡(GAN)和卷積神經網絡(CNN)進行電子計算機斷層掃描(CT)圖像與磁共振成像(MRI)圖像融合的方法。生成器針對高頻特征圖像,雙鑒別器針對逆變換后的融合圖像;高頻特征圖像通過GAN模型進行特征融合,低頻特征圖像通過基于遷移學習的CNN預訓練模型進行特征融合。實驗結果表明,與當前先進融合算法相比,所提方法在主觀表現上紋理細節特征更加豐富,輪廓邊緣信息更加清晰突出;在客觀指標評估中,融合質量評價指標(QAB/F)、信息熵(IE)、空間頻率(SF)、結構相似性(SSIM)、互信息(MI)和融合視覺信息保真度(VIFF)等關鍵指標比其他最佳測試結果分別提高了2.0%、6.3%、7.0%、5.5%、9.0%和3.3%。融合后圖像可以有效地應用于醫學診斷,進一步提高診斷效率。

        發表時間: 導出 下載 收藏 掃碼
      共1頁 上一頁 1 下一頁

      Format

      Content

      小泉真希